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T h e  s y m m e t r y  of hel ical  s t r u c t u r e s  a n d  t he i r  d i f f r ac t i on  p a t t e r n s  is d i scussed ,  a n d  a l is t  is g iven  of 
t h e  l ine g r o u p s  for  e n a n t i o m o r p h i c  hel ical  s t r u c t u r e s .  T h e  m a i n  b o d y  of t h e  p a p e r  c o n c e r n s  t w o  
specia l  k i n d s  of p r o j e c t i o n  of a hel ical  s t r u c t u r e - - t h e  r ad ia l  p r o j e c t i o n  a n d  t h e  hel ical  p r o j e c t i o n .  
I t  is s h o w n  t h a t  t he se  p r o j e c t i o n s  p r o v i d e  a v e r y  c o n v e n i e n t  w a y  of t h i n k i n g  a b o u t  a hel ical  s t ruc-  
t u r e  a n d  a n a l y s i n g  i ts  d i f f r a c t i on  p a t t e r n .  The  t h e o r y  of  t hese  p r o j e c t i o n s  is g iven  in de ta i l ,  a n d  
the i r  uses  are  d i scussed .  

Introduction 
Since it was first developed some years ago by Coch- 

ran, Crick & Vand (1952; hereafter referred to as C. C.V. 
for short) and by Stokes (unpublished), the theory of 
diffraction by a helical structure has been of great 
value in the analysis of the structure of many sub- 
stances, notably the synthetic polypeptides (for ex- 
ample Cochran & Crick, 1952), deoxyribonucleic acid 
(for example Wilkins, Stokes & Wilson, 1953; Frank- 
lin & Gosling, 1953), tobacco mosaic virus (for ex- 
ample Watson, 1954; Franklin & Klug, 1955) and 
collagen (for example Cohen & Bear, 1953; Cowan, 
North & Randall, 1953), to name only some of the 
most important. 

In essence the results of C.C.V. contain the full 
diffraction theory, in much the same way as three- 
dimensional Fourier series analysis contains the theory 
of diffraction by a crystal lattice. But, just as in the 
latter there have been found many special techniques 
for considering the problem, so will there also be other 
ways of considering helical diffraction theory which 
are, or may prove to be, useful in practice. It  is the 
purpose of this paper to give some of these ways of 
thinking about a helical structure. 

The type of structure which we shall consider is one 
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which is infinite in one special direction, which we 
shall call the 'fibre direction', and finite in all direc- 
tions perpendicular to this. We shall consider that  the 
structure repeats exactly after a distance c in the fibre 
direction, since any real structure can be made to 
approximate to this as closely as we please. Thus, the 
Fourier transform of such a structure will fall on to 
discrete layer planes, but will be continuous on each 
layer plane. Naturally, in actual specimens, the ma- 
terial may form a three-dimensional lattice, but the 
effect of this is easily allowed for--for example, by 
appropriate samplings of the semi-continuous :Fourier 
transform. 

Before embarking on the algebraical treatment w e  
shall consider certain general properties of structures 
of this kind, including special projections and matters 
of symmetry. 

1.1. Symmetry and special projections 

Let us first consider the symmetry elements, which as 
usual must form a group. Then for a structure of this 
type- - tha t  is, infinite in one direction onlymthere will 
be at least one infinite straight line, the 'fibre axis', 
which every symmetry element of the group will turn 
into itself. We shall take this particular line (it is 
usually unique) as the z axis. Notice that  the distance 
of any point from this line is unaltered by the opera- 
tion of any symmetry element. Thus all the points 
produced by the operation of all the possible sym- 
metry operations upon one chosen point will be equi- 
distant from the z axis. That is, they will lie on a 
cylindrical sheet co-axial with the z axis. 

Now consider two particular projections. The first is 
the projection of the structure parallel to the z axis. 
This will have the symmetry of one of the two- 
dimensional plane point groups, though naturally 
without the restrictions usually imposed by crystallo- 
graphers. These point groups are of two kinds: the 
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cyclic point-groups, Clv, which have only an N-fold 
rota t ion axis, where N is any integer (not merely 
1, 2, 3, 4 and 6); and the point  groups, C~v, which 
have  in addit ion mirror  reflexion across radial  lines, 
there being N such lines. 

The second kind of projection is the more useful of 
the two for discussion of the symmet ry .  Consider a 
cylindrical surface which is co-axial with the z axis. 
Project  the s t ructure  on to this surface along lines 
s tar t ing from the z axis and perpendicular  to i t - - t h a t  
is, along radial  lines. We shall call the result a ' radial  
projection' .  However,  we shall usually th ink of it in 
a slightly modified form. Imagine  such a cylindrical 
surface cut along a s t ra ight  line, parallel to the z axis, 
and then opened out flat ,* and imagine t ha t  identical 
sheets of this type  are laid side by side, in register, 
till the plane pa t t e rn  extends to infinity in a direction 
perpendicular  to the z axis as well as parallel to it. 
I t  is this infinite two-dimensional plane p a t t e r n - - t h e  
re i tera ted radial  p ro jec t ion - - tha t  we shall refer to 
simply as the radial  projection. I t  is clear tha t  it will 
have the s y m m e t r y  of one of the two-dimensional 
plane groups. These plane groups are listed in the 
International Tables (1952, pp. 58-72). There are 17 
of them, but  our rule t ha t  any  symmet ry  element must  
leave the z axis unmoved eliminates the last eight of 
them. Of the remaining nine, the first two are enantio- 
morpheus  and the other seven are non-enantiomor- 
phous. 

We shall not  consider the non-enant iomorphous 
ones fur ther ,  since they  are only rarely required. The 
vast  major i ty  of helical s t ructures  are necessarily 
enant iomorphous,  since they  are displayed by ma- 
terials which contain only one optical isomer. More- 
over, detailed examinat ion of the non-enantiomor- 
phous groups shows tha t  a helical molecule is very  
unlikely to display such symmetries,  for a var ie ty  of 
reasons. 

Since the radial  projections of the enant iomorphous 
groups are of only two kinds, namely  p l  and p211, 
(International Tables, 1952, p. 58) the enumerat ion of 
the possible groups is simple. The only symmet ry  
operations are:  

t - - a  t ransla t ion parallel  to the z axis. 
r - - a  rota t ion of 2n/N radians  about  the z axis, where 

INI is any  positive integer greater  than  one. 
s - - a  screw displacement;  t ha t  is, a t ranslat ion parallel 

to z together with a rotation of 2~/M radians about 
the z axis, where we have artificially restricted M 
to being a ra t ional  number  writ ten u/t in later  sec- 
tions (also IM I ~ 1). 

2 - - a  twofold rota t ion about  a line passing through the 
z axis and perpendicular  to it. 

* If one wishes to distinguish between left-handed and right- 
handed helices then it is advisable to adhere to a fixed con- 
vention, say, that the cylindrical surface is opened out with 
the inside face upwards. The basic helix in Fig. 1 would then 
represent a right-handed helix. 

I t  turns  out tha t ,  omit t ing the case where there is 
no symmet ry  whatsoever  (not even a translat ion),  
there are eight possible combinations of these sym- 
met ry  elements. These are obtained by choosing 

(a) either a t ranslat ion (t) or a screw axis (s); 
(b) either a parallel N-fold rotat ion axis (r), or not ;  
(c) either a perpendicular  dyad  axis (2), or not. 

All combinations of these three choices are possible, 
giving the eight cases set out in Table 1. We tenta t ive ly  

Table 1. The eight enantiomorphic line groups 
Proposed symbol t t2 t r  tr2 s s2 sr  sr2 
Position of z axis Non-U Non-U U U U U U U 

Minimum number 
of asymmetric 1 2 N 2N 1 2 N 2N 
chains 

U ---- unique. Non-U ---- not unique. 
N refers to the N-fold parallel rotation axis. 

suggest the nomenclature  indicated above, pu t t ing  
the 2, when it occurs, at  the end. The symbol t could 
be omit ted but  is included for clarity. 

Na tu ra l ly  the ones tha t  will concern us most are the  
last four, since these apply to t ruly  helical structures,  
whereas the first four could more apt ly  be called 
cylindrical. In  place of the number  of asymmetr ic  
units in the repeat ,  which depends on the par t icular  
screw axis involved, we m a y  usefully specify the  
'minimum number  of asymmetr ic  chains'.  This can be 
defined as follows. Let the line group be represented 
by a discrete number  of infinite continuous lines in 
general positions, t ha t  is, not  passing through a sym- 
met ry  axis. W h a t  is the minimum number  possible ? 
The answers are included in the table. Note t ha t  the 
actual  number  of chemical chains in a s t ructure  m a y  
be a multiple of this minimum number.  

The first four line groups can usefully be regarded as 
special cases of the last four in which the angle of 
rotat ion of the screw axis has become zero. Thus in 
isolated fibrous molecules we should expect them to 
occur only very  occasionally. In  an assembly of 
fibrous molecules they  m a y  perhaps occur more often 
because of interactions between molecules, but  even 
then they  m a y  be ra ther  rare. 

We note briefly t h a t  the symmet ry  suggested for the 
s t ructure  of deoxyribonucleic acid (DNA) is s2 

(Watson & Crick, 1953), while t ha t  of the proposed 
s t ructure  of polyadenylic acid (see Watson,  1957) is 
s r ,  N = 2. No case of s r2  has so far  been reported. 

1.2. The  effects  of s y m m e t r y  e l e m e n t s  on the 
Four ier  t r a n s f o r m  

We shall adhere as far  as possible to the notat ion in 
C.C.V.; (r, ~ ,z)  and (R,y~, ~) are cylindrical co- 
ordinates in real and reciprocal space respectively. 
Consider first the simplest helical line groups, s, 
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wi thout  ro ta t ion axes of either kind. We have re- 
str icted ourselves to cases where there is an exact  
repeat  af ter  a distance c in the z direction. Thus the 
fundamenta l  parameters  of the helix, the t ransla t ion 
p and the rota t ion 2 ~ p / P  are such tha t  the ratio P / p  
can be expressed as a ra t ional  fraction u/t,  where u 
and t are integer. (For the effect of a depar ture  from 
an exact  integer rat io see C.C.V. and Frankl in  & Klug 
(1955).) Thus we shall have u p  = tP  = c. In  other  
words there are u asymmetr ic  units of the s t ructure  
dis t r ibuted evenly along exact ly  t turns  of the basic 
helix. :Note t ha t  this is not  necessarily a physical  
description of the s t ructure ;  it corresponds to a 
par t icu lar  choice of the asymmetr ic  unit ,  and this is 
by no means unique, as will be famil iar  to crystallo- 
graphers.  

The s t ructure  factor  per asymmetr ic  unit  is for the 
/th layer-line (see C.C.V.) 

F ( R ,  v2, l/c) = .~, ~, fsJn(2:~Rrs) 
j n 

× e x p  [ i { n ( y J + ½ u ) - n ~ / +  ~ - ~ } ]  . (1)* 

For  any  one a tom there is a summat ion  over the orders 
n of Bessel functions determined by the  selection rule 

1 = t n + u m ,  (2) 

and there is a fur ther  summat ion  over all the a toms 
in the asymmetr ic  unit ,  their  co-ordinates being 
rj, q)j, zj.  

This result  obtained by  C.C.V. for helical s tructures 
is essentially a special case of the theory  of Fourier  
t ransforms in cylindrical co-ordinates for (non-helical) 
s t ructures  periodic in z. The Fourier  t ransform of such 
general s t ructures  will be finite only on a set of layer 
planes, on each of which the scat tered ampli tude will 
be of the form 

c o  

F ( R ,  yJ, ~) = .~, A n ( R )  exp [in(y~+½~)], 
7 / ~  - - O O  

where 

× exp [i ( -nq~+ 2~ l z / c ) ] rdrdq )dz ,  

or an analogous expression for the case of discrete 
atoms. This result  is perfectly general. However,  if 
the  s t ructure  is helical there is a fur ther  rota t ional  
periodicity, l inearly related to the t ranslat ional  perio- 
dicity in z. This has the effect of making  m a n y  of the 
Bessel terms systemat ical ly  zero, and only those 
obeying a relation between n and 1 can be finite. Thus 
we see t ha t  it is the selection rule t ha t  is the t rue 
characterist ic of a helical s tructure,  the appearance of 
Bessel functions in the theory  being due to the use of 
cylindrical co-ordinates. This point  of view m a y  help 

* This equation has been derived for a right-handed helix. 
In the case of a left-handed helix n must be replaced by --n 
in equations (1) and (2). 

to clarify the t r e a tmen t  of some of the problems con- 
sidered later  in this paper.  

We must  now consider the other  helical line groups;  
in doing so we shall adhere to the  notat ion a l ready  
employed. This causes no difficulty except for those 
rare cases where the  N-fold parallel rota t ion axis 
reduces the length of the t rue crystal lographic repeat  
because N is a factor  of u. For  example if there were 
an 8-fold screw axis and a 2-fold parallel rotat ion axis  
the crystal lographic repeat  would be ½c. For  con- 
sistency in the algebra we shall, in such cases, use c 
to mean not  the  t rue  repeat  but  the repeat  the struc- 
ture would have if the parallel rotat ion axis were 
absent.  

The effect of the rota t ion axes on the general for- 
mula  for the s t ructure  factors is easy to see. An N-fold 
parallel rota t ion axis makes  all Bessel function contri- 
butions zero unless their  order, n, is an integral  mul- 
tiple of N,  so t h a t  this restriction becomes an addi- 
tional selection rule. 

A 2-fold perpendicular  axis, parallel to the line 
= 0, causes equat ion (1) to be replaced by  

F ( R ,  y~, 1/c) = ~ Z 2 f s J n ( 2 ~ R r  i) 
j n 

× cos (-nq~s+2~lcZS) e x p  in(y~+½~ ) , (3} 

where the  sum goes over one asymmetr ic  uni t  as be- 
fore. Thus when ~ -  ±½~ all the s t ructure  fac tors  
are real, which is not  surprising since this is the plane 
of the reciprocal lat t ice perpendicular  to the dyad.  
Moreover, the phase of the contribution of any  par- 
t icular Bessel function varies in a predictable m a n n e r  
with yJ, since it depends only on the value of n, and 
not  on the atomic parameters ,  apa r t  from an ambigui ty  
of ~ due to the ambigui ty  of the sign of the ampli tude 
at  ~ = -½~.  

The s y m m e t r y  of the Pa t t e r son  function and of the  
intensi ty distr ibution in the reciprocal latt ice (which 
are of course Fourier  t ransforms of each other) follow 
the usual  rules. Tha t  is, the u-fold screw axis in the 
real s t ructure  will be replaced in the Pa t te r son  by a 
u-fold rota t ion axis;  the perpendicular  dyads  will, in 
the Pat terson,  all pass through the origin and a centre 
of s y m m e t r y  will be added,  so t ha t  mirror  planes will 
be generated perpendicular  to each even rota t ion axis. 
If  U is the lowest common multiple of u (from the 
u-fold screw axis) and N (from the N-fold parallel 
rotat ion axis) then the net  rota t ion axis of the  Pa t te r -  
son is U-fold. The operat ion of the  selection rules 
makes  the difference between the orders of successive 
Bessel functions on the same layer line equal to U. 

I t  is instructive to consider how the intensi ty  varies 
as one travels  round one layer plane a t  a constant  
distance from the $ axis. This is most  usefully discussed 
in terms of the number  of Bessel functions contribut-  
ing to t ha t  pa r t  of the  reciprocal lattice. As pointed 
out in C.C.V., this number  increases as R increases, 
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though the effective number for any value of R varies 
from layer line to layer line. 

If only one Bessel function contributes, as is usually 
the case near the meridian, it is easy to see from 
equation (1) tha t  the intensity is constant, whereas 
the phase rotates at a uniform rate, making n com- 
plete revolutions for one circuit of the ~ axis (the 
Bessel function concerned being J~). 

If two Bessel functions contribute, the intensity will 
vary sinusoidally, going through U cycles in one com- 
plete traverse of the reciprocal lattice. In general, as 
pointed out by Stokes (1955), we may express the 
intensity as a Fourier series with respect to ~: 

S(R, ~, t/c) 
= A0+2Aleos (U~+~p~)+2A~cos (2U~p+F2)+ . . . .  (4) 

(R constant, 1/c constant). 

a slightly different manner by fixing attention on only 
one particular layer line at a time. 

The way the intensity varies with yj has already 
been set out in equation (4). I t  is clear tha t  the 
number of samples, equally spaced in ~, should equal 
the number of terms appearing in equation (4). Thus, 
normally, if three Bessel functions are contributing to 
the part  of the layer line being considered, three 
samples, spaced at intervals of ~ = ½(2~/U), will 
average to the required average, A 0. 

In the exceptional case mentioned earlier, which 
occurs on the equator when U is odd, it is possible to 
take rather fewer samples. I t  is easy to see from 
equation (1) that  the number of samples can be equal 
to the number of Bessel functions of positive order 
(including zero) if the angular spacing between the 
samples is the appropriate sub-multiple of 2ze/2U 
rather than of 2zc/U. However the general rule: 

If there are perpendicular dyads we can choose the 
origin so tha t  ~1 = YJ~ = ~.~ . . . .  = 0. 

I t  is easy to show that  the highest term needed in 
this expansion at a particular value of R depends on 
the maximum difference in the orders of the con- 
tributing Bessel functions (with due allowance for 
sign of the orders), the number of cosine terms re- 
quired being this difference divided by U. Thus 
usually the number of terms will equal the number of 
Bessel functions contributing. The only systematic 
exception to this occurs on the equator when U is odd, 
since in such a case, because of the centre of symmetry  
of the intensity distribution, the odd t e r m s  in the 
above expansion all vanish (A 1 = A 3 = A 5 . . . .  = 0). 

1.3. Fibre d i a g r a m s  

If crystal reflexions are present, a fibre diagram 
gives the average intensity for a finite set of values 
of ~-- those  values at which reciprocal-lattice points 
occur. But, if the fibre diagram consists of layer-line 
streaks only, then it gives the intensity averaged over 
all values of yJ. I t  is a mat ter  of some practical interest 
to obtain this average value for any proposed struc- 
ture. 

If the structure factors have been computed it is 
easy to show (Franklin & Klug, 1955) that  the simplest 
procedure is to calculate the intensity due to each 
:Bessel function, taken separately, and then add these 
intensities together (see equation (31) below). This 
gives correctly the average intensity over all values 
of ~. However, if the structure is being studied by 
means of optical transforms the different Bessel func- 
tions on a given layer line cannot easily be separated, 
and an alternative procedure should be followed. The 
reciprocal lattice is sampled in a small number of 
planes of constant yJ (i.e. one makes optical transforms 
of the corresponding projections), and the intensities 
so obtained are averaged. This problem has been con- 
sidered by Stokes (1955) but we shall treat  it here in 

'a true average is obtained if the number of samples, 
uniformly spaced in the angular repeat of 2z~/U, 
equals the number of contributing Bessel functions', 

is always true. In using this rule any Bessel function 
which is fortuitously absent within the sequence of 
Bessel functions should be counted as if it were present. 

I t  is useful to remember that ,  since one normally 
sees both halves of an optical transform, a single 
optical transform will sample reciprocal space at 
points spaced F = ~ apart. If U is odd the right- 
and left-hand sides of the optical transform may be 
different, except on the equator where the intensity 
at two such points is necessarily the same. 

For structures with perpendicular dyads the in- 
tensity in any ptaue perpeudicula~ to one o~ the dyads 
will be at a maximum or a minimum value as far as 
the variation with respect to F is concerned. In regions 
where only two Bessel functions (whose orders differ 
by U) are contributing, a single sample at an angular 
distance of ±¼(2~/U) from one of these positions will 
give the average intensity. 

II.1. Reciprocal  relat ions between the (n, l) plot 
and the hel ix net 

In this section we shall discuss the radial projection 
already described (§ 1.1). We shall first consider the 
case in which there is only one atom in the asymmetric 
unit; then the case where there are several atoms in 
the asymmetric unit, but all at the same radius. This 
enables one to see in a simple way the relationship 
between the radial projection and the intensities of the 
diffraction pattern of the structure. Finally we shall 
discuss the general case in which atoms lie at several 
different radii. 

(a) One atom in the asymmetric unit 
An example of the reiterated radial projection 

(described in § I. 1) is shown in Fig. 1, which represents 
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Fig. l. The helix net (or radial projection) for a hypothetical 
case in which the axial repeat contains 10 units in 3 turns 
of the basic helix. 

a helix with 10 asymmetr ic  units  in 3 turns. Bear 
(1955) has called a pat tern  of this k ind a helix net, 
and  we propose calling the points of the net helical 
net points. 

The Fourier  t ransform of this two-dimensional  
pa t te rn  will clearly be the net  pat tern  reciprocal to 
Fig. 1, as shown in Fig. 2(a). However, instead of 
labell ing the axes of this reciprocal net  in reciprocal- 
latt ice units,  we have marked  the horizontal axis 'n '  
and  the vertical axis 'l', so tha t  each point  in Fig. 2(a) 
can be characterized by a pair of integers (n, 1). I t  is 
easy to see from the selection rule of equation (2) 

tha t  if the point  (n, l) is present  in Fig. 2 (a) it implies 
tha t  the Bessel function, J . ,  will occur in the diffrac- 
tion pa t te rn  of this helical s tructure on the l th layer  
line. In  other words, Fig. 2 (a) expresses geometrical ly 
the selection rule for Bessel functions. To bring this 
out more clearly we have included Fig. 2(b), in which 
lines are drawn joining up all the points having  the 
same value of m (see equation (2)). 

Now consider a par t icular  point  (n, l) in the re- 
ciprocal lattice shown in Fig. 2(a), for example  (2, 5). 
This corresponds in the real two-dimensional  space of 
Fig. 1 to a set of sinusoidal densi ty waves. A very 
simple and rapid way of f inding the direction of these 
waves (defined, for example,  as the line parallel to the 
zero lines of the wave) is shown in Fig. 3. This is 
s imply Fig. 1, but  with the horizontal  axis labelled l 
(backwards) and the vertical  axis labelled n. Alter- 
nat ively,  it  can be regarded as Fig. 2(a) (on some 
suitable scale) turned 90 ° anticlockwise. Then the line 
joining the origin to, say, the point (2, 4) in Fig. 3 is 
parallel  to the wave corresponding to the point  (2, 4) 
in reciprocal space. The spacing of the wave can be 
found by noting tha t  the (n, l) set of waves makes n 
intercepts along the horizontal edge and 1 intercepts 
along the vertical edge of the basic rectangle of Fig. 1. 
Also note tha t  in three dimensions n gives the number  
of helical lines (chains) necessary to cover all the helix 
net points, except when n and 1 have a common factor, 

• 12tl " • T " 
• 1 0 , -  

• 8 * 

"'f'- • 2 " 

--8. -4. 2f , 4 . 8 12 > n 

• ~ -  ° 

-12 

°I ° 1 0  ¸ • 

(a) (b) 

Fig. 2. (a) The net reciprocal to that of Fig. 1, read as an (n, l) plot. 
(b) The (n, l) plot with the various 'branches' of the diffraction pattern labelled by the values of m. 
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:Fig. 3. Part of the radial projection of the example shown in Fig. 1. Each line is the projection of one of the continuous helices 
underlying the helix net, and is labelled with the appropriate pair of integers (n, l). (The discussion in the text shows that 
n and l play a role analogous to Miller indices.) 

If we fix an origin and assign to each net point a horizontal co-ordinate 1 and a vertical co-ordinate n, as has been done 
in the figure, then the labelling of the continuous helices follows automatically. 

when  the  n u m b e r  is equa l  to  n d iv ided  by  th is  factor .  
These  r a the r  obvious poin ts  are useful when consider- 
ing the  more  compl ica ted  cases of rad ia l  pro jec t ions  
(see below). 

The  o ther  hel ical  line groups can easily be dea l t  
with.  The exis tence of a paral le l  N-fo ld  ro t a t i on  axis 
means  t h a t  the  p ro jec t ion  of the  s t ruc tu re  corresponds  
to  N repeats  in the  hor izon ta l  d i rect ion of the  inf in i te  
ne t  shown in Fig. 1. The  scale of n in Figs. 2 and  3 
mus t  cor respondingly  be mul t ip l i ed  by  N,  w i thou t  in 
a n y  way  changing  the  p a t t e r n  of points .  

The  exis tence of a pe rpend icu la r  d y a d  implies t h a t  
there  will be two a toms,  re la ted  by  the  dyad ,  a t  each 
ne t  po in t  in Fig. 1. However ,  we can r e t a in  the  above  
descr ip t ion  if we place the  single a t om on the  d y a d  
axis. The  case when  the  a toms  are no t  on the  d y a d  is 
best  considered as a special  example  of t h a t  t r ea t ed  
in the  n e x t  sub-sect ion (b). 

(b) More than one atom in the asymmetric unit  
I t  is clear t h a t  there  is a r a the r  i n t ima t e  geometrical 

re la t ionsh ip  be tween the  real  ne t  of Fig. 1 and  the  
reciprocal  ne t  of Fig. 2. We shall  now show t h a t  for 
the  case in which all the  a toms  lie at one radius this  
re la t ionsh ip  ex tends  to the  intensity dis t r ibut ion .  As 
usual ,  we consider f irst  the  s implest  helical  line 
group,  s. 

Le t  all  the  a toms  lie a t  radius  r 0. We  cons t ruc t  the  
rad ia l  p ro jec t ion  as before, call ing the  co-ordinates  of 
Fig. 1 (x,z) such t h a t  x j = - ~ . ~ r  0 and  z ] = %  An 
example ,  wi th  th ree  a toms  in the  a symmet r i c  uni t ,  
is shown in Fig. 4. The Four ier  componen t s  of the  
rad ia l  p ro jec t ion  will be 

F(h,  l) = Z. f j  exp [2~i  + , (ha) 
1 

where a ~ 2~r  0. This  has  considerable  s imi la r i ty  to 
e q u a t i o n  (1). To br ing th is  out  more  clearly we wri te  

J,(27~Rro) exp [in(~+~Te)] = Bn(R , v2). 

Then,  since B n is i ndependen t  of j ,  we can wri te  
equa t ion  (1) for th is  case as 

I i 

I t !/!/L~,I 

I : ~ "~ 

I I ° 
2g. ~ .. 

"10 -- 2~rro x 

:Fig. 4. Radial projection of a 10-unit 3-turn helix with 3 
atoms in the asymmetric unit. The basic helix is shown as 
a full line and the 'helical net points' as dots. The atoms are 
shown as circles. 

The projected co-ordinates ~' are for use in Fig. 5. 

F (R ,  yJ, I /c ) - -  .~  B,,(R, y , ) ~ f ,  exp [ 2 ~  (~-~J +/--zci)] 
n j 

= Z Bn(R, F)Tn, z, (hb) 
n 

where 

Thus  the  whole di f f ract ion p a t t e r n  of the helical 
structure can be charac ter ized  by  a set  of complex  
numbers ,  T~,,z, which  we can p lo t  a t  the  po in t s  of a 
two-d imens iona l  la t t ice ,  as in Fig. 2, wi th  r ec t angu la r  
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co-ordinates n and 1 (strictly n/a and 1/c). Ident i fy ing 
n and h in equations (5a) and (5c), we see tha t  the 
Tn, t a r ray  is nothing but  the weighted reciprocal 
latt ice of the two-dimensional  radial projection of the 
helical structure. This relat ionship was first pointed 
out by  Crick (1953). 

The advantage  of this way of looking at the struc- 
ture is tha t  we can quickly est imate from the two- 
dimensional  radial  projection (Fig. 4) which of its 
Fourier  components are strong and which weak (by 
using Bragg-Lipson charts, for example,  in which 
case Fig. 3 enables us to construct  the correct chart  
for any  part icular  Fourier  component  very quickly). 
This tells us immedia te ly  which Bessel terms will be 
strong and which weak. In  short a radial  projection 
is a convenient  way of es t imat ing the sum of the 
phase factors in equation (1). 

The other helical line groups present no difficulty. 
The cases where there is an N-fold parallel  rotat ion 
axis is exact ly  as in the last section. The effect of 
perpendicular  dyads  is to put  a centre of symmet ry  
into the radial  projection, thus  making  the numbers  
T,,.l real ra ther  than  complex. 

(c) Atoms at various radii 
When atoms are not all at the same radius, the 

simple result given above will not hold, since we can- 
not perform the factorization in equat ion  (5b). The 
contr ibut ion of one Bessel funct ion of order n to the 
scattering ampl i tude  on the layer line 1 is now repre- 
sented by a complex number  G,,z(R) whose modulus 
and phase vary  with R, where 

G~,,~(R) = ff, f ,J~(27~Rrj)exp li(-ncfj+2~--lcZJ)l . (6) 
] 

In  this notat ion the scattered ampl i tude  on a layer 
line 1 is given by 

F(R,  y~, 1/c) = ~" G,,,z(R) exp [in(y~+½~)], (7) 
n 

where the sum is, of course, subject  to the usual  
selection rule (2). 

We should like to have a convenient  way of estimat- 
ing the contr ibut ion of the various atoms to Gn,~(R). 
Now each atom contributes a Bessel funct ion mul- 
t iplied by  a phase factor involving only its ~ and z 
co-ordinates. The phase factor is the same form for all 
atoms, and is essentially scale-free, not depending on 
the radius. I t  can thus be convenient ly es t imated from 
a single diagram, namely  the radial  projection (on to 
a cylinder of radius r0) and it is this which gives the 
radial  projection its value. When  considering any  
part icular  Bessel function, order n, at a radius in 
reciprocal space R, we regard each atom in the radial  
projection as having a weight Jn (2~zRrj). We can then 
est imate the phase factor in exact ly the way de- 
scribed for (unweighted) atoms in the last sub-section 
(b); for example,  by using Bragg-Lipson charts. 

Moreover the same diagram will do for all values of 
n and R we wish to consider. 

The radial  projection, therefore, is the most con- 
venient  way of representing the structure in order to 
make quick est imates of its diffraction pat tern.  I ts  
use was first pointed out by Wyckoff  (1955). 

II.2. Net  a m b i g u i t i e s  and connect ion 
a m b i g u i t i e s  

Bear (1955) has discussed the relat ionship between 
the real and reciprocal nets and has described 'net  
ambigui t ies '  and 'connection ambiguit ies ' .  His net  
ambiguit ies  correspond to the ambigu i ty  in deciding 
the correct line group from the diffraction data.  His 
connection ambiguit ies  correspond roughly to the 
usual ambigui ty  in drawing the uni t  cell of Fig. 1. 
In  par t icular  the helix net  of a fibrous structure does 
not in itself tell how the chemical chains of the struc- 
ture connect up the points of the helix net, let alone 
how m a n y  separate chemical chains the structure 
possesses. 

However, if the atoms of a structure are concen- 
t ra ted along a chain direction it is sometimes possible, 
by  using the methods just  described, to determine the 
run of the chains, and hence the number  of chains, 
from the order n of the strongest Bessel funct ion ob- 
served in the diffraction pat tern.  

II.3. An interpretat ion of m 

These considerations serve to show tha t  the conven- 
t ional  description of a helical structure adopted in the 
first section as u units  repeating in t turns of one helix 
is not necessarily the most i l luminat ing.  I t  is probably  
the simplest  to imagine geometrically*. We have called 
it the basic helix since it leads to a very simple inter- 
pretat ion of the integer m, occurring in the selection 
rule (2) and characterizing the various 'branches '  of 
the diffraction pat tern.  

The equat ion to the basic helix is 

r = constant,  cp-2rez/P = O. 

This is a member  of a space-filling fami ly  of helices 
all of the same pi tch P,  defined by 

r = constant,  c f - 2 z z / P  = constant  = ~0', say. 

Now we can imagine a helix passing through each 
atom, and can fix the position of each atom by a new 
set of co-ordinates, namely  the az imuth  q0' of the helix 
passing through it, and the fraction of the helix screw 
measured along the helix. That  is, we make the co- 
ordination t ransformat ion 

* Note that our basic helix corresponds to one of the two 
'genetic helices' of Bear (1955). The choice above is that having 
the greater pitch or smaller distance between equivalent 
points along the helix. 
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rj, : rj , ] 

q~i = qoj- 2nz j /P  , i (8) 
a~ = 2~rzj/p. 

Then  the phase factor determining the contribution of 
the j t h  a tom to J= on the l th layer line becomes 

= exp [ i { - n ( T / +  2~z / /P)+  2~lz//c}] 

= e x p [ i { - n q D ; +  2~z/ 

and using equation (2), 

= exp [i{-nq~j + maj}] . ( 9 )  

We thus  see tha t  m has the meaning of an index for 
t ransla t ional  periodicity along the basic helix, just  as 
1 is an index for t ranslat ional  periodici ty along the z 
axis and n for rotat ional  periodicity. The 'gearing'  of 
t ranslat ion and rotat ion in a helical screw is expressed 
by a linear relation between n, 1 and m, namely  equa- 
tion (2)*. We can use any  two of three integers n, 1 
and  m to describe the diffraction pat tern  and the helix 
net;  the pair  (n, l) will usual ly be the most convenient. 

III.1. Helical projections 

In  § II.1 we showed how the radial  projection of a 
structure might  be used to est imate for a part icular  
value of R the value of the various Bessel function 
terms G,,,g(R) corresponding to the sets of sinusoidal 
density waves (n, 1). When the atoms are not all at one 
radius the weights J~ (2~Rr) to be at tached to the dif- 
ferent atoms do not all vary  at the same rate with R. 
The procedure would accordingly be rather  heavy, 
and it m a y  be much more convenient to fix our 
at tention on one Bessel function term G,,,z(R ) at a 
time. In  this section we shall show tha t  it is then more 
useful to construct a special two-dimensional projec- 
tion related to the part icular  (n, l) term being con- 
sidered. 

From the relation between Gn, z(R ) and the (n, l) 
set of waves in the radial  projection, discussed in § II,  
it is clear tha t  the t ranslat ion of each atom in a direc- 
tion parallel  to the zero lines of the wave has no 
effect on G=,~ (R). This suggests, that ,  in considering 
one Bessel function term G~,I(R), we m a y  project the 
atoms parallel  to the (n, l) zero lines; we shall denote 
this direction by (n, 1). In  three dimensions this 
procedure corresponds to projecting the structure 
down a corresponding set (n, l) of helices. The con- 
struction of such maps  of the structure was first 
proposed by Crick (1953), who called them helical 
projections and pointed out tha t  the (n, l) helical 
projection offered a quick method of es t imat ing the 
effect of the phase factor in the mathemat ica l  ex- 
pression for G,,,z(R). Such a projection will be useful, 

* From the point of view of § II.1, m gives the number of 
intercepts that the set of lines (n, l) makes on the set of lines 
(1, t) corresponding to the basic helix. 

when only one Bessel function effectively contributes 
to a layer line we wish to consider. This will happen 
when the other possible Bessel terms on the layer  l ine 
are either of too high an order, or else lie s l ightly off 
the layer line, as in the case of a structure which does 
not repeat exact ly in the distance c after a whole 
number  of turns. 

We m a y  restate this idea mathemat ica l ly  as follows. 
When  only one Bessel function is relevant,  the seat- 
tered ampli tude on the layer line 1 is given by  

F ( R ,  v2,1/c) 

= Z , f / Jn (2~rRr~)exp  [i{n(~v+½~)-nq~j+2zdzj/c}] 
J 

= Gn,~(R) exp [in(~v+½~r)], (10) 

where G~,~ (R) is defined by equation (6). 
Let us for the moment  restrict ourselves to the cases 

n # 0 and 1 # 0. Then if there are two atoms with 
cylindrical  co-ordinates (rl, ~1, zl) and (r2, ~2, z2) such 
tha t  

- nq~ 1 + 2~r (l/c)z 1 = - nq) 2 + 2zt (1/c)z2, )  
r 1 -~ r 2 , 

then, apar t  from the atomic scattering factor, their  
contributions to the above sum will be equal for all 
values of R and y~. Thus if we project the entire struc- 
ture along lines defined by the relat ions 

-q~+2~r(1/nc)z = const., r =  const. , ( l l )  

the pat tern  we obtain is uniquely related to the 
structure factor given by equation (10). 

Equat ion  (1 l) defines a space-filling family  of helices 
each having a pitch nc/1. If one projects all the atoms 
by moving them along the appropriate helices of this  
set, one obtains the helical projection along (n, 1). We 
may  draw the projection either on the horizontal plane 
z = 0 or the vertical plane ~ = 0. In  Fig. 5 we have 
drawn the helical projection along ( 3 , - 1 )  of an 
example similar to tha t  discussed in the last section 
and shown in Fig. 4, but  where the atoms are now to 
be considered as lying at various radii. For definiteness, 
we shall henceforth consider only the projection on to 
z = 0, which has the form of a two-dimensional map  
in which the j t h  atom of the first asymmetr ic  uni t  of 
structure has the polar co-ordinates: 

r~, q~] = q~i- 2~r(1/nc)zs . (12) 

Now we have shown in § I I  tha t  in a radial  projec- 
tion the (n, l) lines make n intercepts on the horizontal 
axis. Accordingly, if one travels round the (n, l) 
helical projection, keeping at a constant  radius, the 
variat ions in projected electron densi ty will, in general, 
repeat n t imes in one complete revolution, i.e. the  
pat tern will have n-fold rotat ional  symmetry .  This 
pat tern  can then be considered as made up of a number  
of angular  Fourier components of frequency 0, ± n ,  
±2n,  . . . ,  ±hn,  . . . ,  where h is an integer. Now con- 
sider one of these angular  components,  the (hn)th, say. 
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* By a cylindrical structure is usually meant one in which 
the helical screw has degenerated into a pure translation, but 
an N-fold rotation axis remains (tr in the notation of § I). 
The general diffraction theory given here and in C.C.V. is 
still valid, but in this case the same orders of Bessel functions 
occur on all layer lines, i.e. the helix net and (n, l) plot are 
rectangular arrays. Cylindrical lattices are discussed briefly in 
§ VI at the end. 

I f 
- n ~ "  0 

Fig. 6. The r, n~' plot corresponding to Fig. 5(a). Note that 
in this example atoms 1 and 3 have phases differing nearly 
by zt. 

I t  is a two-d imens iona l  p a t t e r n  wi th  (hn)-fold rota-  
t iona l  s y m m e t r y ,  and  i t  can be shown (see § IV.2 
below) t h a t  i ts  two-d imens iona l  Four ier  t r ans fo rm is 
ident ica l  wi th  the  t e rm  Gh,,hl(R) ex p [inh(v2+~2-~)], 
t h a t  is, wi th  the  s t ruc tu re  fac tor  on the  (h/)th layer  
line. 

We  thus  see t h a t  a Four ier  ana lys is  of this  single 
p ro jec t ion  would lead to the  whole set of t e rms  
Gh,,hz(R), h being a n y  in teger  as before. We  migh t  
well have  expec ted  all these t e rms  to  be invo lved  since 
the  d i rec t ion  of the  (n, l) belical  p ro jec t ion  is deter- 
mined only  by  the  ra t io  of n and  l, the  p i t ch  of the  
helix being nc/1. I t  is in th is  sense t h a t  we m a y  t h i n k  
of the  t e rm Gh,,hl(R) as the  h th  order  of G,,I(R). I f  
the  hel ical  p ro jec t ion  has a large (hn)-fold lumpiness ,  
we can see a t  once t h a t  the  layer  line hl will have  
s t rong X - r a y  in tens i t ies  on it. A l t e rna t ive ly ,  if its 
(hn) th  angu la r  Four ie r  c o m p o n e n t  is weak,  the  X - r a y  
in tensi t ies  will be weak or absent .  

No te  t h a t  i t  is not  necessary  to p ro jec t  the  whole 
s t ruc ture .  I t  is clear f rom the  m a n n e r  of de r iva t ion  
t h a t  one need  only  p ro jec t  one a s y m m e t r i c  un i t  a long 
the  r e l evan t  helix on to p lane  z = 0 and  then  opera te  
on th i s  l imi ted  p ro jec t ion  wi th  an  n-fold ro t a t i on  to 
produce  the  ent i re  helical  project ion.  I t  is the  fac t  
t h a t  only  one a symmet r i c  un i t  needs to be pro jec ted  
t h a t  makes  the  m e t h o d  useful. 

The  fac t  t h a t  we need  on ly  p ro jec t  one un i t  also 
leads to ano the r  useful k ind  of p lo t  if we wish to con- 
sider each of the  Ghn, hl t e rms  separa te ly .  Consider,  for  
ins tance ,  the  Bessel t e rm G,,1. The phase  angle for  
each a tom is n~/ ,  where ~/ is g iven by  equa t ion  (12) 
and  is t he  angu la r  co-ordina te  in the  hel ical  pro jec t ion .  
Hence  if we pro jec t  one a symmet r i c  un i t  and  p lo t  i t  
on n t imes  the  angu la r  scale we shall  have  a p lo t  
showing the  radius  and  the  phase  angle of each a tom.  
An example  is shown in Fig. 6, where we have  con- 
s t ruc ted  the  p lo t  cor responding  to the  t e rm G3,_I(R) 
for  the  h y p o t h e t i c a l  s t ruc tu re  of Fig. 4. L u m p i n g  
toge the r  a toms  a t  a p p r o x i m a t e l y  the  same radius,  we 
see t h a t  in the  example  the  phase  angles of a toms  1 
and  3 differ  by  a va lue  close to  Jr, and  we can thus  
expect  t h a t  the i r  con t r ibu t ions  to the  Bessel t e rm will 
a lmos t  cancel. Thus  th is  k ind  of p lo t  m igh t  be useful  
when  one is mov ing  a toms  abou t  in bui ld ing  a t r ia l  
s t ruc tu re  for a substance.  F u t u r e  exper ience m a y  show 
whe the r  this  d i rect  phase  plot  is a n y  more  useful  t h a n  
the  ac tua l  hel ical  pro jec t ion ,  since the  l a t t e r  in prin-  
ciple conta ins  no t  only  Gn, l bu t  all the  h igher  order  

ehn, hl" 
For  completeness ,  we should  add  t h a t  so far  we h a v e  

considered on ly  cases where n + 0 and  1 # O. W h e n  
1 = 0 we get  the  usual  p ro jec t ion  para l le l  to  the  z axis. 
W h e n  n = O, 1 # 0 the  helices degenera te  in to  circles 
pe rpend icu la r  to  the  z axis, in which  case i t  would  be 
more useful  to  consider  the  p ro jec t ion  on to  the  

= 0 plane.  Indeed ,  for  a cyl indrical ,  as d i s t inc t  f rom 
a hel ical  s t ruc ture ,  these  are the  on ly  pro jec t ions  of 
this  k ind  possible (see W h i t t a k e r ,  1955)*. 

We  mus t  also deal  br ief ly  wi th  the  o ther  hel ical  l ine 

(a) 
Fig. 5. The helical projection in the (3, --1) direction of the hypothetical structure of Fig. 4 plotted (a) in the z = 0 plane, 

(b) in the ~ = 0 plane. The direction of projection is indicated by dotted lines in Fig. 4. 

0 I I I ! I 

0 ) r 

(b) 
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groups. When there is an N-fold parallel rotation axis, 
the helical projection along (n, l) will have nN-fold 
rotational symmetry, instead of the straightforward 
n-fold symmetry of the simplest helical line group s. 
The effect of perpendicular dyads on the (n, l) helical 
projection is to add radial mirror reflexion lines, i.e. 
to increase the symmetry from Cx to Cx~.. The G,~,z(R ) 
terms will then be real rather than complex (see equa- 
tions (3) and (7)), but the helical projection itself will 
have a centre of symmetry only when n is even. 

III.2. An appl icat ion  of he l ica l  projec t ions  to 
d i s o r d e r e d  s t r u c t u r e s  

I t  sometimes happens that we have helical molecules 
or polymers arranged as in a crystal lattice but with 
a disorder consisting of a variable displacement of the 
molecules along their axes or a variable rotation about 
their axes. It  is also possible to have--although this 
has not been often recognized--a combination of both, 
i.e. a variable screw. In such cases the overall crystal- 
tinity of the arrangement will be destroyed and the 
diffraction pattern will correspond to the continuous 
transform of the molecule, but some parts of the X-ray 
diagram will still correspond to diffraction by a crystal. 
For if the disorder consists of a screw (taking the most 
general case) in the direction determined by the family 
of helices (n, l) (using our previous notation), the 
helical projection of the structure along (n, l) will be 
unchanged. Hence in reciprocal space the correspond- 
ing set of Bessel terms Gh~,hl(R), h an integer, will be 
unaffected by disordering, and so, as far as these 
parts of the diffraction pattern are concerned, the 
scattering from different molecules is coherent. Thus 
the corresponding parts of the X-ray diagram will 
resemble diffraction by a crystal and show sharp 
reflexions. 

An analysis of this kind, but without using the 
terminology of helical projections, has been given by 
Franklin & Klug (1956) for diffraction by dry tobacco 
mosaic virus, where the rod-shaped virus particles 
pack together in an hexagonal arrangement and are 
interlocked by helical grooves. The original paper 
should be consulted for further details. 

Another example of disorder where this type of 
analysis should be applicable is to be found in the 
transition at 20 ° C. reported by Bunn & Howells 
(1954) in their X-ray study of the polymer, polytetra- 
fluoroethylene. The fact that  the reflexions corre- 
sponding to the J0 and J1 parts of the molecular trans- 
form remain sharp suggests that the disordering in- 
volves a screw motion along the basic helices. 

A simpler t)Te of disorder involving only axial dis- 
placements, has been found in the case of deoxyri- 
bonucleic acid by Wyckoff (1955). 

IV. F o u r i e r  s y n t h e s e s  of e lec tron  dens i ty  

In general the X-ray photographs that can be ob- 
tained from a helical structure are fibre diagrams. 

These will often be of poor quality compared with 
X-ray photographs of single crystals, and the only 
method we have of testing a proposed structure is to 
compare observed and calculated intensities (see Crick 
(1954) for further discussion of these points). How- 
ever, there are instances, notably in the cases of 
tobacco mosaic virus and deoxyribonucleic acid, 
where the quality of the photographs is high, and ac- 
cordingly, by analogy with single-crystal work, the 
question arises of calculating the electron density from 
the scattered amplitude. We shall, therefore, now 
discuss the problem of Fourier inversion in three- 
dimensional cylindrical co-ordinates. The furthei 
question of whether there is a useful analogue of the 
Patterson function will be dealt with in a later section. 

IV.1. T h e  t h r e e - d i m e n s i o n a l  F o u r i e r  s y n t h e s i s  

Suppose that the phases have been determined for at 
least some of the accessible structure-factor terms 
GT, I(R) either by trial or otherwise (e.g. isomorphous 
replacement, as in tobacco mosaic virus (Franklin, 
1957)), and we wish to use them with the observed 
moduli to calculate the electron density. 

It is convenient to assume a continuous electron 
density ~(r, 9, z), find its Fourier transform, and then 
show how this may be inverted again. In so doing we 
shall re-derive in a very general way the basic result 
of C.C.V. 

Since the electron density ~ is periodic in q~ and in 
z we may expand it in the form of a double Fourier 
series 

l c o  c o  

~(r, 9, z) = - • Z gn, l(r)exp[i(nq~--2zdz/c)], (]3) 
C l ~ - - O 0  ~ = - - 0 0  

where the gn, l(r) are, in general, complex functions of r. 
They are the obvious generalizations of ordinary two- 
dimensional Fourier coefficients and are given by 

= 0 (r, 9, z) 

× exp [- i (ncf-2~lz /c)]dgdz.  (13a) 

The Fourier transform of Q is 

F(R, v/, ¢) = q~, z) 
. P O ¢ O  

× exp [2~i{Rr cos (cf-~)+¢z}]rdrdq)dz. 

Substituting from (13), we find, as we expect, that  the 
integral over z will be non-zero only when ~ = l/c, i.e. 
that  the scattering is confined to layer planes. On any 
one layer plane 1 we then have 

F(R, W, lie) 

= f l ~ g,,,t(r) exp (incf) exp [27dRr c°s (q~-v/)]rdrd~ 

f = J~'exp [in(~o+~-~)] g,~,z(r)J~(2~Rr)2~rdr, (14) 
n 0 
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where we have used in the last  step the integral  
representat ion of the Bessel funct ion 

2zinJn(x) -- exp [i{x cos q~+nq0}]dq~. (15) 
o 

In  keeping with our previous notation, we write 
(14) as 

F (R,  yJ, 1/c) = .~, Gn, z(R) exp [in(~f+½~)], (14a) 
n 

where, now, 

G~,z(R ) = g~,z(r)J~(2~Rr)2~rdr (16) 
o 

=if iQ(r ,q) , z )J~(2x~Rr)  

× exp [i(-nq~+2xdz/c)]rdrdq~dz (16a) 

(cf. (6)). 

Note tha t  this analysis  is perfect ly general and we 
have nowhere used the fact tha t  we are dealing with 
a hel ix;  in general, all the g~,z(r) terms will occur in 
equation (13), and hence, of course, all Gn, z(R ) will 
also occur. However, when the structure has helical 
or cylindrical  symmet ry ,  some of the g~,z (r) terms will 
vanish.  The values of n and 1 for which the g~,l(r) 
remain  non-zero m a y  be found very s imply  by  con- 
sidering the radial  projection of the structure (see 
the remarks at the end of § IV.3 below). The effect of 
the symmet ry  is to reduce the size of the asymmetr ic  
unit ,  and indeed it is easily shown tha t  only those 
gn,~(r) occur which obey the selection rule (2).* In  the 
case of the helical line groups with rotat ion axes and 
perpendicular  dyads  there will, of course, be addit ional  
restrictions on n and l, as a l ready discussed in § I. 

Wi th  these restrictions on n and l, we now recognize 
equations (14a) and (16) as the ra ther  obvious exten- 
sion of equat ions (1) and (6) to the case of a continuous 
densi ty  distr ibution.  Our derivat ion has, however, 
been such tha t  we can easily f ind the inverse trans- 
form. By  the Fourier-Bessel  inversion theorem (Titch- 
marsh,  1937) it  follows from equat ion (16) tha t  

gn, l(r) = Gn, Z (R)Jn(2~Rr)2~RdR . (17) 
0 

We use this equat ion (17) to obtain the g~,z(r), and 
then  f inal ly  evaluate  the Fourier  synthesis,  using 
equat ion (13). 

I t  will now be clear tha t  to make  the Fourier  syn- 
thesis of electron densi ty  we need to know the in- 
dividual Gn, z(R). If one were using, for instance, the 
met,hod of isomorphous replacement  one would have 
to separate the various terms in a region of R where 
two or more G~,~ overlapped on the same layer  line. 

* The diffraction pattern of a continuous helix may be 
derived from this point of view, by considering it as the 
limiting case of a discrete helix with an infinite number of 
units per turn. It is then obvious that only the branch m ~ 0 
o C C U r S .  

ACll 

Although it  seems impossible to use in practice, 
we might  note, for completeness, tha t  if we knew only 
the resul tant  modulus and phase along a layer  line, 
tha t  is, if we have F (R ,  0, l) = ~ G.,z (R), we would 

n 

be able to determine the individual  Gn, l (R) by  Four ie r -  
Bessel analysis.  One would use the proper ty  of the 
orthogonali ty of Bessel functions of different order 

I J~(2~Rr)Jp(2z~Rr')2zeRdR = 0, if n ~ (18) p .  

Further ,  if n -- p, the integral  vanishes unless r = r'. 
Hence an individual  g~,z(r) is given by  the J~ trans- 
form of the scattered ampl i tude  on a layer  line. For- 
mal ly  

f E(R,  O, 1)Jn(2~Rr)27eRdR. (19) g~,l(r) 

Ideal ly,  the J~ t ransform would be non-zero only for 
those n obeying the selection rule (2). Indeed,  if we 
knew the phase along a layer  line, we could discover 
the helix net,  i.e. th~ values of u and t in equation (2), 
by  evaluat ing Bessel t ransforms of different orders 
for a number  of layer  lines in turn  and noting those 
tha t  do not vanish.  

IV.2. Four i er  s y n t h e s i s  of a he l i ca l  projec t ion  

When we construct a helical projection along (n, l) we 
obtain in the (r, q0') plane (see equat ion (12)) a two- 
dimensional  densi ty  dis t r ibut ion having  n-fold sym- 
metry,  which we shall  denote by  Q(r, ~'). Then the 
expression (16a) for the corresponding terms Ghn,t,z (R), 
where h is, as before, any  positive or negat ive integer, 
m a y  be wri t ten as 

Ghn, h~(R) = e(r, cy)Jn(2~Rr) 
o o 

x exp (-ihncp')rdrd~'.  (20) 

Now we can expand  o'(r, ~') in terms of its angular  
components 

a(r, ~') = .,~ ~'k (r) exp (ikcy), 
k 

k = O, ±n,  -t-2n, . . . ,  ±hn,  . . . ,  (21) 
where 

~'k(r) = I o'(r, q)') exp (-ik~')d~'. (22) 

The two-dimensional  t ransform of one of these angular  
components Yh~ exp (ihnq)') is 

Fh~ (R, ~) = exp (ihncy) 
0 

x exp [2~iRr eos (q)'-~o)]rdrdcp' 

= exp [ihn(v2+½~)] f 7hn (r)J,, (2~Rr)2xerdr 

= Gh,,,hz(R) exp [ihn(v/+½g)], (23) 

1 5  
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since it follows from (22) and (20) that  

= f yh~,(r)Jn(2~Rr)2x~rdr. (24) Ghn, hz(R) 

Thus we have proved the statement made in § I I I  
tha t  the Bessel function term G~,z on the /th layer 
line is the transform of the nth angular component of 
the helical projection down (n,/), G2n, 2 l o n  the 2/th 
layer line is the transform of the 2nth component, 
and so on. 

Note that ,  by comparing the right-hand sides of 
equations (24) and (16), we can identify yn(r) (for 
a particular pair (n, l)) with gn, z(r), thus establish- 
ing the connection between the full three-dimensional 
Fourier synthesis and the limited synthesis of a helical 
projection. Indeed, the ~'n required for the helical 
projection are to be found in exactly the same way 
as in the three-dimensional case, since by inversion of 
equation (24): 

Yh~'(r) = I Gh,,,hz(R)Jn(2=Rr)27~RdR. (25) 

Equations (25) and (21) between them show us how 
to construct the helically projected electron density, 
if we know the relevant set of Gn, l(R). A synthesis 
of this kind is being carried out for tobacco mosaic 
virus by Dr R. E. Franklin (private communication), 
using a limited number of G,,l whose phases have 
been determined by isomorphous replacement. The 
particular value of such a procedure in a substance as 
complex as tobacco mosaic virus is tha t  a single, 
appropriately chosen, helical projection can be used to 
show up certain specific features of the structure. 

the form taken by the g~,~ (r) in a simple case. Since 
g,,,z(r) - 7 n ( r )  of the helical projection (n, l), we see 
that ,  in our example in Fig. 5, we would have, for the 
case of point atoms, 

ga,i (r) = (~ (r-r1) exp [-i3~'1] + 6 (r-r~.) exp [ - i 3 ~ ]  
+~(r-ra)  exp [ - i 3 ~ ]  , 

g6,~(r) = 6(r-r~) exp [-i6q~;]+5(r-r~) exp [-i6q~'~] 
+~(r-ra)  exp [ - i 6 ~ ] ,  

and so on, where 6 (x) is a cylindrical 6 function defined 
by 

I f ( x )d (x - xo )2~xdx  = f(xo).  

This form for g~,~ (r) may be checked by substituting 
it in equation (16), to obtain, for example, 

Ga,~(R) = ~" J~ (2zRr~) exp [ - i 3 ~ ]  

= ~ J~(2z~Rr~) exp [i (-3cf~+2~z~/c)], 
using (12), 

which is the correct result. 
For real atoms, the ~ functions must be replaced by  

say, Gaussians, and the expression for Gn, l(R) will 
correspondingly contain the atomic scattering factors. 

IV.3. The radial projection 

I t  is possible to derive equations for constructing a 
Fourier synthesis of the radial projection of a struc- 
ture, as defined in § I. However, they turn out to be 
very cumbersome and not particularly useful and we 
shall not reproduce them here. In dealing with con- 
tinuous distributions of density, it is much more 
illuminating mathematically to derive results, not for 
the true radial projection 

z) = I ~(r, 9, z)rdr,  (26a) ~r (9, 
d 

but for a related function 

~c (9, z) = 1 ~(r' 9, z)dr,  (26b) 

which is a radial projection of the density weighted by  
1/r. Because of its physical significance and the 
ensuing mathematical simplicity, it is this 'de- 
weighted' projection which we shall refer to in this 
section simply as the radial projection. Note tha t  it 
corresponds to a superposition of the density in various 
cylindrical shells of the structure, all drawn out to the 
same linear dimensions without regard to radius. 

Substituting from (13) into (26b), we obtain 

= ~ • A,, z exp [inq~-2=ilz/c] . (27) 
n 

This is an ordinary two-dimensional Fourier series with 
constant coefficients A~,z given by 

S An, z = g~,~ (r)dr . (28) 
o 

The A~,z can also be expressed in terms of reciprocal- 
space quantities by using (17) to obtain 

An, z = S S Gn, z(R)Jn (27~Rr)27~RdRdr . 

The double integral may be reduced by interchanging 
the order of integration and using the result 

i 
oo 1 

Jn (2gRr) dr -- (29) 
0 2gR ' 

and hence the coefficients An, z are given by the fol- 
lowing integral in reciprocal space: 

A~,,~ = a,,,z(R)dR . (30) 
0 

The similarity between equations (28) and (30) is very 
striking. 
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As a concrete example, we note tha t  if we have two 
point atoms of weights Z z and Z~ at  different radii 
rz and r2, but  with the same ~p and z co-ordinates, 
~ and z~, then 

A~,~ = (Zz/2z~rz + Z~/2xr2) exp [ i ( - n ~ i +  2xdzi/c)] . 

Equations (26b) and (27) show how to make a 
Fourier synthesis of a radial projection from the dif- 
fraction data. But  since the determination of the 
Fourier coefficients A~,~ would seem to require prior 
knowledge of the whole course of G~,~(R) as a function 
of R, it would be more realistic to construct the full 
three-dimensional electron density. If there were some 
simple means of estimating, say, the average value of 
G~.~(R), then this synthesis might prove very valuable 
indeed. 

We have included it here chiefly because it brings 
out, in an instructive way, how the g~,~(r) of the full 
three-dimensional structure reduce to simple Fourier 
coefficients A~,~ in the radial projection. The selection 
rule (2) relating n a n d / - - w h i c h ,  as we have seen, is 
what characterizes a helical structure--will  be un- 
changed by the projection. We can thus conveniently 
use the radial projection for discussion of helical sym- 
metry,  as has been done in § IV.1. 

V. T h e  P a t t e r s o n  f u n c t i o n  of  a he l i ca l  pro jec t i on  

We shall now consider what information may be ob- 
tained directly from the intensities, when we have no 
knowledge of the phases. If we had three-dimensional 
data  we could of course construct the Patterson func- 
tion, but, as mentioned earlier, the only data  we 
usually have is from a fibre diagram. From this the 
cylindrically averaged Patterson function may be 
calculated (MacGillavry & Bruins, 1948) in a perfectly 
general way that  makes no use of any helical features 
tha t  might be present in the structure. 

The question natural ly arises: if we know the helical 
symmetry,  as expressed, say, by the selection rule (2), 
can we do anything better ? We shall now show that  
if one can determine the separate intensity contribu- 
tions G~,z(R)* it is possible to construct certain maps 
related to the Patterson of a helical projection. To 
avoid the cumbersome convolution integrals tha t  
would arise for a continuous density distribution, we 
revert to the case of discrete atoms. 

Now it has been shown by Franklin & Klug (1955) 
tha t  the cylindrically averaged intensity along a layer 
line is given by 

<F 2 (R, ~f, 1/c)>~ = 2: .~, Jn (2~Rri)J~ (2~Rr~.) 
n i,j 

× cos n(~0i-~j)---g- (z~-zj) , 

= .~  G~,~(R) (31) 
n 

* Strictly, this should be written IG,~,z(R)I ~, since G is, in 
general, complex. 

in our notation. Essentially this means that ,  in a fibre 
diagram, Bessel functions of different order effectively 
do not interfere, and indeed they may even lie at  
slightly different levels, as has been found in the case 
of tobacco mosaic virus. Let us fix our at tention on 
one term G~.z(R) (or ra ther - -as  it will turn  out---the 
set of terms G~,m(R)) and consider how the corre- 
sponding helical projection is related to it. We shall 
now derive a relation between G 2 l(R), and the Pat- ~, 
terson of the helical projection along (n, 1). 

2 

12t,=, _ ,=,.,,,, 

1 

Fig. 7. 

Fig. 7 is intended to represent two non-equivalent 
atoms 1 and 2 in the projection and the vector rz2 
between them. To construct the Patterson we simply 
place the vector r12 at the origin of r, ~' co-ordinates 
in Patterson space. To relate ]rz~ I to r 1 and r~ we 
require the addition theorem for Bessel functions 
(see, for instance, Strat ton,  1941) which states tha t  

co 

Jo(/~rz~) = Z,  Jk(~rz)Jk(~r2) exp [ i / c ( ~ - ~ ; ) ] .  (32) 
k = - - o o  

Now, in the helical projection, for any one atom there 
will be another ( n - l )  equivalent ones at  the same 
radius, successive atoms being separated by an angle 
2gin. Hence if we sum equation (32) over the set 2 
of atoms, we obtain 

2: Jo(2rz2) 
set  2 

oo n-1 I 2:~ ,,] 
= Z,  Jk(2rz) Jib(Are)2:exp [ i ]c (~+p~--q~l ) [ ]  

k=----oo p = O  

= 2: Jk(/~r~)Jk(/tre) exp [ ik (~£ -~ ; ) ] .  
k = O ,  i n ,  --b2n, . . .  

This equation will hold for any choice of atom out of 
the set 1. Hence, summing over the set 1, we get 

2: ~Y, Jo(~rle) 
set  1 set  2 

= n .~ Jk (,~rz)Jk (~r2) exp [i/c(~--q~;)]. 
k = 0 ,  =t=n, =h2n . . . .  

Finally, summing over all the pairs of atoms in the 
asymmetric unit, we obtain 

1 2 :  2 : J0  (~rij) 
n i j 

-- ~Y, Z J~(~ri)Jk(2rj)exp [ ik(~]-q~)] .  (33) 
k=O,  :l:n . . . .  i , ]  

Now, in terms of the co-ordinates r, ~' (see equation 

15" 
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(12)) of the helical projection along (n, l), Gn, z as de- 
fined by equation (6) is to be written as 

Gn, t = Z, f iJ~(2~Rr/)  exp [- inqY] . 
i 

Hence, if we put  2 = 2~R and insert factors f i f j ,  
equation (33) can be written as 

1 
.~  .~, f i f  jJo (2~Rri/) 

n i i 
= G~,o(R)+2G~,~(R)+2G~,2z(R)+. . .  , (34) 

which shows tha t  the J0 transform of the Patterson 
of a helical projection is equal to the sum of the 
squares of the set of Ghn, h t corresponding to tha t  
projection. We thus have proved an analogue of 
Parseval's theorem. Since a J0 transform has cylin- 
drical symmetry,  we can express our result formally 
as follows. If Pn, z(r, ~') represents the Patterson 
density of the helical projection, and 

1 f ~'~ t)n'l(r) = ~ 0 Pn, l(r, cf')dcf' 
n ~2nln 

- 2~rJo Pn, z(r, ~ ' )d~'  (35) 

is its rotational average, then 

l °~P~, z (r)J o (2~Rr) = 2 2z~r dr G 2 hn, hZ (R).  (36) 
0 h=0, :El, -4-2, . . .  

Inverting, we obtain 

P~,z (r) = G~n, ~ (R) Jo (2~Rr)2~R d R ,  (37) 
0 h=0, , . . .  

which is the desired relation. 
I t  is too early to say whether (37) will prove to be 

useful. I t  is easy to show that  the rffn, z(r) curve will 
contain a rather broad peak near 2r when there is a 
concentration of density at the radius r in the helical 
projection. I t  will thus reveal the radial limits of a 
structure, but it is not superior in this respect to the 
cylindrical Patterson. We have tried out equation (37) 
for the a-helix, using the intensities calculated by 
Pauling, Corey, Yakel & Marsh (1955) to evaluate* 
the rotationally averaged Patterson of the helical 
projection down the basic helix (1, 5). The resulting 
curve was, however, not easily interpretable in terms 
o~ the individual Patterson vectors. 

I t  is perhaps worth while noting that  equation (32), 
which is the basis of our derivation, is a special case 
of the formula (Stratton, 1941) relating the vector rl~ 
to r~ and r~" 

J~ (2ri~ ) exp [in99~ ] 

C O  • ! t 

= .~  Jk(2r~)J~+k(2r~)ex p [ in~]  exp [*k(92-90] ,  (38) 
/¢=--¢o 

• We are indebted to Mr K. C. Holmes for carrying out the 
computation. 

and we might hope to use the latter in the same way 
to obtain results involving P,,,~(r, qg) rather than 
P~,z (r). But we see at once tha t  (38) involves products 
of Bessel functions of different order and such terms 
occur only in the expression for the full diffracted 
intensity F2(R, v?, 1/c) before the cylindrical averaging. 
Indeed, from the point of view of diffraction theory, 
equation (38) is nothing but the expression (in 
cylindrical co-ordinates) of the perfectly general result 
tha t  the Fourier transform of the Patterson is the 
intensity distribution. 

I t  thus appears tha t  equation (37) represents all we 
can hope to learn from the cylindrically averaged 
intensity alone. 

VI. Cylindrical lattices 
I t  is interesting to note tha t  the theory given in this 
paper bears a certain resemblance to tha t  in recent 
papers on cylindrical lattices by Whittaker,  Waser 
(1955) and Kunze & Jagodzinski (for references, see 
Whittaker,  1955). There is, however, very little in 
common apart  from the mathematics of Bessel func- 
tions. A cylindrical lattice is made up of concentric 
cylindrical sheets of crystal-like unit cells, and the 
angular separation between asymmetric units is very 
small compared with the radius of the cylinder. In 
other words, Bessel functions of very high order are 
involved, and the approximation 

J,, (x) ,-~ ¢ ( 2 )  . cos (x-½nzc-¼z~) 

may be introduced, resulting in structure factors of 
the usual trigonometric form applicable to three- 
dimensional lattices. The analogues of our Gn, z(R ) 
extend over very short distances in reciprocal space 
and may be considered as broadened crystal reflexions. 
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Tobacco Mosaic  Virus:  Applicat ion of the Method of I somorphous  Replacement  
to the Determinat ion  of the Helical  Parameters  and Radial  Densi ty  Distr ibut ion 
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I t  is known that  in tobacco mosaic virus (TMV) structurally equivalent protein sub-units lie in 
helical array about the long axis of the rod-shaped particle. I t  has not, however, proved possible 
to make a reliable determination of the helical parameters by the usual methods of direct measure- 
ment on X-ray fibre diagrams. 

A quantitative comparison has now been made of the equatorial intensities in fibre diagrams of 
TMV and of a mercury-substituted TMV, TMV-Hg. This has led to the determination, first of the 
radial distance of the substituted mercury from the particle axis in TMV-Hg, and then of the 
parameters of the helical arrangement of protein sub-units in TMV. I t  also made possible the 
calculation of the radial density distribution in TMV, the result obtained being in good agreement 
with the earlier work of Caspar. 

From a knowledge of the helical parameters and other physical and chemical data  it can be shown 
that  the symmetry of TMV is that  of the simplest possible helical line group, there being no sym- 
metry elements other than the helical axis. 

Introduction 

The X - r a y  f ibre-diagrams obtained from orientated 
prepara t ions  of tobacco mosaic virus (TMV) show tha t  
the  particles have a highly ordered internal  s t ructure  
(Bernal & Fankuchen,  1941). The best fibre diagrams 
are obtained from concentrated aqueous gel prepara-  
tions in thin-walled glass capillary tubes (Bernal & 
Fankuchen ,  1941), in which the virus particles, of 
length about  3000 A (see Williams & Steere, 1951) 
and mean diameter  about  150 /~ (Bernal & Fan- 
kuchen, 1941; Frankl in  & Klug, 1956) lie with their  
long axes parallel to the axis of the tube. Since the 
virus particles are in r andom rota t ion about  their  long 
axes, and, moreover,  do not  lie str ict ly on a lattice, 
these fibre diagrams record, effectively, the cylindri- 
cally averaged squared s t ructure  factor  of a single virus 
part icle;  interpart icle interference effects are appre- 
ciable only on the equator  a t  spacings larger than  
100 A. 

Certain features of the  s t ruc ture  of the virus can be 
deduced directly from measurements  made  on TMV 
fibre diagrams alone. In  this way  it has been shown 
(Watson,  1954; Frankl in ,  1955) t h a t  the  virus protein 
(which comprises about  94% of the  virus, the  re- 
mainder  being ribonucleic acid (RNA)) consists of 
equivalent  sub-units  set in helical a r r ay  about  the 
particle axis, the axial repeat  period of 69 A contain- 
ing 3 n + l  such sub-units  on 3 turns  of the helix. I t  
was also shown (Franklin & Klug, 1956) from a direct 
s tudy  of TMV fibre d iagrams t h a t  the surface of the  
TMV particle is not  smooth, but  bears a ra ther  deep 
helical groove, between the turns  of which lies a 
helical a r r ay  of knobs. 

While it is possible to push somewhat  fur ther  this 
type  of direct in terpreta t ion of the  TMV diagrams,  
more substant ia l  progress can be made  by comparing 
these diagrams with those of related substances.  I t  
has been shown by Green, Ing ram & Perutz  (1954) 


